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Notes 1. CONVEX FUNCTIONS

A function f defined on an interval I is called a convex function if it satisfies

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ I, λ ∈ [0, 1].

Observe that z = (1−λ)x+λy is a point on the line segment connecting x and y.
As λ increases from 0 to 1, z runs from x to y. The line segment in R2 connecting
(x, f(x)) and (y, f(y)) is given by the graph of the linear function

l(z) =
(f(y)− f(x)

y − x

)
(z − x) + f(x)

=
(f(x)− f(y)

x− y

)
(z − y) + f(y).

It is readily checked that f is convex if and only if

f(z) ≤ l(z),

for any z lying between x and y. (Here l depends on x and y). This condition
has a clear geometric meaning. Namely, the line segment connecting (x, f(x))
and (y, f(y)) always lies above the graph of f over the interval with endpoints x
and y.

A function is called concave if its negative is convex. Apparently every
result for convex functions has a corresponding one for concave functions. In
some situations the use of concavity is more appropriate than convexity.

Proposition 1.1. Let f be defined on the interval I. For x, y, z ∈ I, x < z < y,
f is convex if and only if either one of the following inequalities holds

f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x
, (1.1)

f(y)− f(x)

y − x
≤ f(y)− f(z)

y − z
. (1.2)

Proof. Let x < y be in I. Now f is convex if and only if for z ∈ [x, y], f(z) ≤ l(z),
that is,

f(z) ≤ f(y)− f(x)

y − x
(z − x) + f(x) .

Move f(x) to the left hand side and then divide both sides by z− x we get (1.1).
Similarly, using the second form of l(z) we have

f(z) ≤ f(x)− f(y)

x− y
(z − y) + f(y) ,
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so (1,2) follows by first moving f(y) to left and then dividing by z − y.

Geometrically this is evident. We fix x first and consider the point z moving
from x to y, (1.1) tells us that the slope keeps increasing. On the other hand, we
fix y and consider the point z moving from x to y, (1.2) tells us that again the
slope increases.

Proposition 1.2. Let f be defined on I. Then f is convex if and only if for
x < z < y in I,

f(z)− f(x)

z − x
≤ f(y)− f(z)

y − z
.

Proof. This inequality can be rewritten as

f(z)(y − z)− f(x)(y − z) ≤ f(y)(z − x)− f(z)(z − x) ,

which is the same as

f(z)(y − x) ≤ f(y)(z − x) + f(x)(y − z)

= (f(y)− f(x))(z − x) + f(x)(y − x) .

Now (1.1) follows by dividing both sides by y− x. By Proposition 1 f is convex.
We can reverse the reasoning to get the converse.

Theorem 1.3. Every convex function f on the open interval I has right and left
derivatives, and they satisfy

f
′

−(x) ≤ f
′

+(x), ∀x ∈ I, (1.3)

and
f
′

+(x) ≤ f
′

−(y), ∀x < y in I. (1.4)

In particular, f is continuous in I.

We note that f is right continuous at x if f+(x) exists and is left continuous
at x if f−(x) exists, see the Lemma 1.5 below. Hence it is continuous at x if
both one-sided derivatives exist at x. We point out that this theorem does not
necessarily hold on a closed interval. For instance, let f be a continuous convex
function on [a, b] and define another function g which is equal to f on (a, b), but
assign its values at the endpoints so that g(a) > f(a) and g(b) > f(a). Then g is
convex on [a, b] but not continuous at a, b.

Proof. From Proposition 1.1 and Proposition 1.2 the function

ϕ(t) =
f(t)− f(x)

t− x
, t > x,
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is increasing and is bounded below by (f(x) − f(x0))/(x − x0), where x0 is any
fixed point in I satisfying x0 < x. It follows that limt→x+ ϕ(t) exists. (If you
are not sure why this is true, see the Lemma 1.4.) In other words, f

′
+(x) exists.

Notice that we still have

f
′

+(x) ≥ f(x)− f(x0)

x− x0
,

after passing to limit. As the quotient in the right hand side is increasing as x0
increases to x, by (1.2), we conclude that

lim
x0→x−

f(x)− f(x0)

x− x0
= f

′

−(x)

exists and (1.3)
f
′

+(x) ≥ f
′

−(x)

holds. After proving that the right and left derivatives of f exist everywhere in
I, we let z → x+ in (1.1) to get

f
′

+(x) ≤ f(y)− f(x)

y − x
;

and let z → y− in (1.2) to get

f(y)− f(x)

y − x
≤ f

′

−(y),

whence (1.4) follows.

Lemma 1.4. Let h be an increasing function on (a, b). Suppose that h(t) ≥
−M , ∀t ∈ (a, b), for some constant M . Then limt→a+ h(t) exists.

Proof. We fix a sequence {tn} in (a, b) satisfying tn → a+. Since h is increasing
and h ≥ −M , {h(tn)} is a decreasing sequence bounded from below, so A =
limn→∞ h(tn) must exist. For each ε > 0, there is some n0 such that 0 ≤ h(tn)−
A < ε for all n ≥ n0. Therefore, for all t < tn0 , h(t) − A ≤ h(tn0) − A < ε .
On the other hand, since tn → a+, we can find some n1 such that h(tn1) ≤ h(t).
Thus, 0 ≤ h(tn1)−A ≤ h(t)−A . By taking δ = tn0−a, we have 0 ≤ h(t)−A < ε
for all t ∈ (a, a+ δ) .

Lemma 1.5. Let f be a function on (a, b) and c ∈ (a, b). Then f is right con-
tinuous (resp. left continuous) at c if f ′+(c) (resp. f ′−(c)) exists. Hence conclude
that f is continuous at c if both one-sided derivatives exist at c.
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Proof. Assume f ′+(c) exists. Taking ε = 1, there exists some δ such that∣∣∣∣f(x)− f(c)

x− c
− f ′+(c)

∣∣∣∣ < 1 , ∀x ∈ (c, c+ δ) .

It follows that

(f ′+(c)− 1)(x− c) < f(x)− f(c) < (f ′+(c) + 1)(x− c) ,∀x ∈ (c, c+ δ) .

Hence

lim
x→c+

(f ′+(c) + 1)(x− c) ≤ lim
x→c+

(f(x)− f(c)) ≤ lim
x→c+

(f ′+(c) + 1)(x− c) ,

which forces that
lim
x→c+

(f(x)− f(c)) = 0 .

The other case can be treated similarly.

The following far-reaching theorem is for optional reading.

Theorem 1.6. * Every convex function on I is differentiable except possibly at
a countable set.

Proof. Noting that every interval I can be written as the union of countably many
closed and bounded intervals, it suffices to show there are at most countably
many non-differentiable points in any closed and bounded interval [a, b] strictly
contained inside I. Fix a small δ > 0 so that [a−δ, b+δ] ⊂ I. Since f is continuous
in [a− δ, b+ δ], it is bounded in [a− δ, b+ δ]. Let M ≥ |f(x)|,∀x ∈ [a− δ, b+ δ].
By convexity

f
′

+(b) ≤ f(b+ δ)− f(b)

(b+ δ)− b
≤ 2M

δ
,

and

f
′

−(a) ≥ f(a)− f(a− δ)
a− (a− δ)

≥ −2M

δ
,

As a result, for x ∈ [a, b],

f
′

−(a) ≤ f
′

±(x) ≤ f
′

+(b),

and the estimate
−2M

δ
≤ f

′

±(x) ≤ 2M

δ
.

holds. Non-differentiable points in [a, b] belong to the set

D = {x : f
′

+(x)− f ′−(x) > 0} =
∞⋃
k=1

Dk,
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where Dk = {x : f
′
+(x) − f ′−(x) ≥ 1

k
}. We claim that each Dk is a finite set. To

see this let us pick n many points from Dk : x1 < x2 < ... < xn. Then

f ′+(xn)− f ′−(x1)

=
(
f ′+(xn)− f ′−(xn)

)
+
(
f ′−(xn)− f ′−(xn−1)

)
+
(
f ′−(xn−1)− f ′−(xn−2)

)
+

· · ·+
(
f ′−(x2)− f ′−(x1)

)
≥

(
f ′+(xn)− f ′−(xn)

)
+
(
f ′+(xn−1)− f ′−(xn−1)

)
+
(
f ′+(xn−2)− f ′−(xn−2)

)
+

· · ·+
(
f ′+(x1)− f ′−(x1)

)
≥ n

k
,

which imposes a bound on n: n ≤ 4kM/δ.

When f is differentiable, Theorem 1.3 asserts that f
′

is increasing. The converse
is also true.

Theorem 1.7. Let f be differentiable in I. It is convex if and only if f
′

is
increasing.

Proof. Theorem 1.3 asserts that f ′ is increasing if f is convex and differentiable.
To show that converse, let z = (1 − λ)x + λy ∈ [x, y]. Applying the mean-value
theorem to f there exist c1 ∈ (x, z) and c2 ∈ (z, y) such that

f(z) = f(x) + f
′
(c1)(z − x),

and
f(y) = f(z) + f

′
(c2)(y − z).

Using f
′
(c1) ≤ f

′
(c2) we get

f(z)− f(x)

z − x
≤ f(y)− f(z)

y − z
,

which, by Proposition 1.2, implies that f is convex.

Theorem 1.8. Let f be twice differentiable in I. It is convex if and only if
f
′′ ≥ 0.

Proof. When f is convex, f
′

is increasing and so f
′′ ≥ 0. On the other hand,

f
′′ ≥ 0 implies that f

′
is increasing and hence convex.

A function is strictly convex on I if it is convex and

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y), ∀x < y, λ ∈ (0, 1).
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From the proofs of the above two theorems we readily deduce the following propo-
sition. Likewise, a function is strictly concave if its negative is strictly convex.

Proposition 1.9. The function f is strictly convex on I provided one of the
followings hold:

(a) f is differentiable and f ′ is strictly increasing; or

(b) f is twice differentiable and f
′′
> 0.

By this proposition, one can verify easily that the following functions are
strictly convex.

• eαx where α 6= 0 on (−∞,∞),

• xp where p > 1 or p < 0 on (0,∞).

• − log x on (0,∞).

Convexity is a breeding ground for inequalities. We establish a fundamental
one here.

Theorem 1.10 (Jensen’s Inequality). For a convex function f on the interval
I, let x1, x2, · · · , xn ∈ I and λ1, λ2, · · · , λn ∈ (0, 1) satisfying

∑n
j=1 λj = 1. Then

f(λ1x1 + · · ·+ λnxn) ≤ λ1f(x1) + · · ·+ λnf(xn).

When f is strictly convex, equality sign in this inequality holds if and only if
x1 = x2 = · · · = xn.

Perhaps we need to explain why the linear combination is still contained in
the same interval. WLOG let x1 ≤ x2 ≤ · · · ≤ xn. Then∑

j

λjxj ≤
∑
j

λjxn = xn ,
∑
j

λjxj ≥
∑
j

λjx1 ≥ x1 ,

together imply that
∑

j λjxj is bounded between x1 and xn and hence belongs to
I.

Many well-known inequalities including the AM-GM inequality and Hölder
inequality are special cases of Jensen’s inequality. Some of them are found in the
exercise.

Proof. We prove Jensen’s inequality by an inductive argument on the number
of points. When n = 2, the inequality follows from the definition of convexity.
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Assuming that it is true for n− 1 many points, we show its validity for n many
points. Let λ1, · · · , λn ∈ (0, 1),

∑
j λj = 1 and let

y =
n−1∑
j=1

λj
1− λn

xj .

Using first the definition of convexity and then the induction hypothesis,

f(λ1x1 + · · ·+ λnxn) = f((1− λn)y + λnxn)

≤ (1− λn)f(y) + λnf(xn)

= (1− λn)f

(
n−1∑
j=1

λj
1− λn

xj

)
+ λnf(xn)

≤ (1− λn)
n−1∑
j=1

λj
1− λn

f(xj) + λnf(xn)

=
n∑
j=1

λjf(xj) .

When f is strictly convex, it follows straightly from definition that the strict
inequality sign in Jensen’s inequality holds when n = 2, x1 6= x2. In general, let
us assume that the strictly inequality sign holds when x1, · · · , xn−1 are distinct
and prove it when x1, · · · , xn are not all equal. For, when all x1, · · · , xn are
distinct, the second ≤ in the above inequalities becomes < due to the induction
hypothesis and hence the strict inequality holds for n. When some xj’s are equal,
we can group the expression

∑n
j=1 λjxj into

∑m
j=1 µjyj where all yj’s are distinct

and m is less than n. In this case the desired result comes from the induction
hypothesis.

When λj ∈ [0, 1], let I1 = {j : λj ∈ (0, 1]} and I2 = {j : λj = 0}. Then in
the strictly convex case, equality sign holds if and only if xj = xk for j, k ∈ I1.
The proof is essentially the same after observing that λjxj = 0 and λjf(xj) = 0
for j ∈ I2 as well as

∑
j∈I1 λj = 1.

Jensen’s inequality is applied to the strictly convex function ex to yield

e
∑n

j=1 λjxj ≤
n∑
j=1

λje
xj .
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It can be rewritten as the generalized Young’s inequality

a1a2 · · · an ≤
ap11
p1

+
ap22
p2

+ · · ·+ apnn
pn

where

aj > 0,
∑
j

1

pj
= 1, pj > 1, j = 1, · · · , n.

Moreover, the equality sign in this inequality holds if and only if all a
pj
j , j =

1, · · · , n, are equal. Taking and xj = apj and pj = n for all j in the general
Young’s Inequality, we recover the AM-GM Inequality

(x1x2 · · ·xn)1/n ≤ x1 + x2 + · · ·+ xn
n

, xj > 0, j = 1, · · · , n,

with equality holds if and only if all xj’s are equal. You may use the function
− log x instead of ex to obtain the same results. In the exercises other inequalities
following from Jensen’s are present.

Finally, we remark that in some books convexity is defined by a weaker con-
dition, namely, a function f on I is convex if it satisfies

f

(
x+ y

2

)
≤ 1

2

(
f(x) + f(y)

)
, ∀x, y ∈ I. (1.5)

Indeed, this implies

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ I,

provided f is continuous on I. I will leave it as an exercise. However, this con-
clusion does not hold without continuity. You may google under “weakly convex
and continuity” for further information.


